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The Abuses of Net Present Value in Energy Efficiency Standards 

 

Abstract. Consumers are often blamed for not making necessary investments in energy-efficient durables 

despite that these investments have positive net present value (NPV). Several papers have argued that 

when investments have option-like characteristics (e.g., irreversibility, uncertainty, flexible timing, and 

lumpiness), the aphorism “invest if the net present value of investing exceeds zero” isn’t the best advice. 

Yet, curiously, the Department of Energy (DOE) in the United States proposes new regulations mandating 

higher energy efficiency standards for consumer durables on the basis of positive NPV over an 

investment’s lifetime. In this paper, we provide a step-by-step deconstruction of DOE’s NPV 

methodology and show that DOE’s method purges volatility, volatility persistence, and nonstationarity 

that are otherwise present in energy prices. As a result, DOE’s projections of future energy prices are 

artificially smooth and statistically biased, casting serious doubt on the reliability of the magnitude of 

energy savings from energy-efficient durables. Our results, therefore, support the notion that consumers’ 

behavior isn’t irrational. 

Keywords: Net present value; energy efficiency; Nonstationarity; Volatility; Electricity and gas prices 

JEL Codes: C22; Q40; Q41; Q47     
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1. Introduction 

The rule, “invest if the net present value of investing exceeds zero” is still widely popular among 

managers and taught to students in business schools. Ross (1995) remarks that NPV “is the meat of most 

textbook and lies at the core of what financial academics think they have to offer CFOs, corporate 

treasurers, investment bankers, and practitioners of all stripes” (p. 96). Excel spreadsheets and financial 

calculators include an “NPV” function, which makes it very easy to calculate the net present value (NPV). 

Harvard Business Review sells a guide for businesses which includes an easy-to-use pre-filled 

spreadsheets for NPV and the other return on investment methods (Sheen and Gallo, 2015). 

However, when investments have option-like characteristics (e.g., irreversibility, uncertainty, flexible 

timing, and lumpiness), simple NPV rules must be modified (McDonald and Siegel, 1986; Pindyck, 1991, 

1999). The concept of NPV is built on the assumption that “the variance of the present value of future 

benefits and costs is zero” (McDonald and Siegel 1986, p. 708). But when investment decisions involve 

real options, variance “matter very much, so that an investment decision based on a mean-reverting 

process could turn out to be quite different from one based on a random walk” (Pindyck 1999, p. 2). 

To appreciate the significance of irreversibility and option value of an investment, let us consider the 

evidence of underinvestment in energy-efficient technologies. Despite the considerable promise for 

reducing the costs and environmental damages associated with energy use, consumers and businesses are 

not investing in energy-efficient technologies to the extent they should, a paradox that has come to be 

known as the “energy-efficiency gap” (Gerarden et al., 2015). Over the last several decades, a burgeoning 

literature has emerged to explain the apparent market failures (and behavioral biases) associated with a 

suboptimal use of energy-efficient technologies – see Gerarden et al. (2015) for an excellent survey of 

this literature. 

However, when viewing through the lens of irreversibility and option to wait, such underinvestment 

in energy-efficient technologies may not appear to be a paradox (Baker 2012). Uncertainty regarding 

future energy price or future benefits from technological change coupled with little resale value, among 

other unobserved costs, may cause consumers and firms to delay or postpone investment in energy 

efficient durable goods. Put differently, the presence of market imperfections, uncertainty, risk, and a host 

of other factors cause the implicit discount rate to be higher making expected present discounted value of 

the energy savings lower than is typically assumed. Numerous empirical studies have revealed that 

implicit discount rates substantially exceeding market interest rates – see Kim and Sims (2016) for an 

overview of the implicit discount rate from 19 energy-efficiency studies. 
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Over the years, the Department of Energy (DOE) in the United States has promulgated a set of new 

regulations mandating higher energy efficiency standards for consumer durables. These regulations are 

derived from the Energy Policy and Conservation Act of 19751 (EPCA) and the DOE is delegated to 

monitor the standards set by the EPCA over time. Hence, when considering amending a standard, the 

DOE follows the guidelines stipulated in the EPCA that the new standard must: “achieve the maximum 

improvement in energy efficiency . . . which the Secretary determines is technologically feasible and 

economically justifiable.” In determining whether a standard is “economically justifiable” or not, the 

DOE depends on a set of techniques such as simple payback period, NPV and life cycle costing to 

evaluate potential savings from investment in energy efficient equipment.2 What is required for the 

regulation to proceed is to show that the NPV is positive. In so doing, however, the DOE neglects other 

relevant costs or benefits, as highlighted above, that can drive the investment decision. 

The primary goal of this paper is to deconstruct DOE’s methodology in evaluating potential saving 

from purchasing or investing in energy efficient durables. We provide a step-by-step description of the 

nature of DOE projections to highlight the underlying limitations in DOE’s methodology such that the 

empirical validity of the future projections about saving is in serious question. Although the issue of using 

simple NPV analysis in the context of energy efficient investments has long been discussed and debated 

in the past literature (more on this below), to the best of our knowledge this is the first paper to offer a 

systematic treatment of the question at hand. The results of our analysis reveal new insights that have 

subsequent implications for other areas of research and policy undertakings. 

The rest of the paper is organized as follows. Section 2 briefly reviews the empirical literature on 

irreversibility, option value and the relevance of discount rates. Section 3 discusses the data and presents 

preliminary empirical evidence supporting the volatility and uncertainty in energy prices. Section 4 

discusses DOE’s predictive methodology in defense of the energy-efficient consumer-durable regulations. 

Section 5 offers a discussion of the main findings. Section 6 concludes the paper.   

   

2. Literature review 

This section briefly summarizes findings of past contributions that concern the shortcomings of 

conventional methods such as life-cycle cost, NPV for evaluating energy-efficient durables. The 

proponents (including the DOE) often frame purchases of energy-efficient durables as akin to investments 

in safe financial instruments like perfectly liquid and insured bank account. However, numerous studies 

have pointed out that the implicit discount rates for purchases of energy-related durables are well above 

the market discount rate. Hausman (1979) finds a discount rate of 20 percent for purchases of energy-

efficient durables. In commenting on Hausman’s paper, Gately (1980) provides discount rates in the range 

of 45 to 300 percent. 
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Hassett and Metcalf (1993) have made an interesting and useful contribution by conducting an option 

value analysis of energy-efficient investments. They find an implicit discount rate of around 20 percent 

due to a high option value to waiting, resulting in the slow diffusion of energy saving technologies. The 

model of Hassett and Metcalf has been extended in several directions. Sanstad et al. (1995) include the 

costs of delaying purchases that offset the value of the option to delay and find a hurdle rate (implicit 

discount rate) of only 6.8 percent. Likewise, Baker (2012) argues that when consumers care more about 

which products to choose (rather than when), uncertainty and irreversibility (or the “option value”) play 

little role in explaining the slow diffusion of energy efficient technologies. Further, Kim and Sims (2016) 

update the option value analysis of Hassett and Metcalf (1993) using more recent fuel price data and find 

that the option value multiplier is lower than Hassett and Metcalf’s results. 

However, when investors’ anticipation of future technological advance is incorporated in Hassett and 

Metcalf’s (1993) model, Ansar and Sparks (2009) find a high implicit discount rate that is generally 

observed in the literature. Bauner and Crago (2015) extend the analysis by Ansar and Sparks (2009) for 

solar PV system and find an option value multiplier of 1.6, implying that the discounted benefits from 

solar PV need to exceed installation costs by 60% for investment to occur.  

It is instructive to review the contributions that highlight the limitations of the so-called ex-ante 

engineering studies which tend to overestimate energy savings from investment in energy-efficient 

durables (see, e.g., Granade et al., 2009). The reason for overestimation is because ex-ante engineering 

analyses rely on predicted energy savings, whereas most impact evaluations are conducted on actual 

energy usage, among other explanations (see Gerarden et al., 2015). Nadel and Keating (1991) compare 

nine residential appliance and lighting programs and find that, except for two programs, the magnitude of 

energy saving ranged from negative to 74% of the engineering estimates. Likewise, in a randomized 

controlled experiment in Florida, Dublin et al. (1986) find that actual conservation is as much as 13% 

below engineering estimates for cooling and 8-12% below for heating. Recent studies that provide 

evidence that predicted savings from certain energy-efficiency programs are overstated include Allcott 

and Greenstone (2012), Davis et al. (2014), Fowlie et al. (2015), Gillingham and Palmer (2014), Houde 

and Aldy (2014), and Levinson (2014), to cite just a few contributions. 

                                                             
1 Public Law 94-163 (42 U.S.C. 6291-6309, as codified) Authority and details are codified in Title 10 of the Code of Federal 

Regulations Parts 429 and 430 (10 CFR Parts 429, 430). 
 
2 42 U.S.C. 6295(o)(2)(B)(i)(II) 
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We contribute to this voluminous literature of energy-efficiency gap in two ways. First, we apply 

recent advances in time series econometrics to test whether energy price evolves as a random-walk 

process (or unit root process) or can be described as a mean-reverting process. As uncertainty about future 

energy prices is often used as a non-market failure explanation of the energy-efficiency gap (Jaffe and 

Stavins, 1994), identifying the stochastic nature of prices is importing for consumers and firms making 

investment decisions. Second, and already stated in the Introduction, we provide a step-by-step 

description of the NPV methodology that constitutes as a building block of ex-ante engineering analyses 

such as the influential analysis of Granade et al. (2009), which has been cited in numerous publications by 

the DOE.  

 

3. Empirics  of energy prices 

3.1 Data  

We employ one basic data set. The Energy Information Agency (EIA) provides data on the retail 

residential prices of gas and electricity, disaggregated by month and state. We acquired these data for the 

period spanning January 2001 through December 2013. For each state plus the District of Columbia, then, 

our data comprise 156 observations. 

That these data are characterized by extreme volatility is readily apparent. By way of example, Figure 

1 portrays percentage changes in the monthly residential prices of gas and electricity, compared to those 

for the CPI, for Louisianna over the 156 months of data. 

 

[Place Figure 1 approximately here]. 

 

3.2 Unit roots tests  

Stationary data are mean-reverting (a price shock is temporary, and data naturally revert to trend). 

Non-stationary data are not mean-reverting, and a price shock will appear to be permanent. Consequently, 

non-stationary data are very difficult to forecast and past observations in levels are not of use in 

predicting the future (Phillips and Zhijie 1998).3  

There are several unit root tests available that allow researchers to determine if data are nonstationary. 

In this paper we use the DF-GLS unit root test as introduced by Elliot et al. (1996), which is a powerful 

GLS variant of the standard Dickey-Fuller test. In particular, standard unit root tests such as the 

augmented Dickey-Fuller (ADF) test have very low power in discriminating between highly persistent 

                                                             
3 Econometricians have tools to convert non-stationary to stationary data, some as simple as first-differencing data or differencing 
at higher orders, although energy-price predictions are illusive even for econometricians. Of course, none of these tools are 

available to untutored consumers attempting to form heuristics. 
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stationary processes and nonstationary processes. Moreover, the power of conventional unit root tests is 

lower as deterministic terms (such as a constant and trend) are added to the test regression (Maddala and 

Kim 1998). Because the DF-GLS test exhibits higher power than conventional tests when the series is 

highly persistent, it is often referred to as an efficient unit root test (Zivot and Wang 2006). 

We apply the DF-GLS unit root test to monthly state-by-state electric and gas retail residential prices, 

in levels, for the period 2001 to 2013. The DF-GLS test is implemented with a constant as a deterministic 

component in the test regression. The null hypothesis of the test is that the series contains a unit root 

against the alternative hypothesis that the series is stationary around a mean. Since the DF-GLS method 

applies the conventional ADF test to locally detrended data, it is unnecessary to include a time trend in 

the test regression. However, our results remain unaffected even if we allow a linear time trend in the unit 

root test. Following Ng and Perron (2001), we use the modified Aikake Information Criterion (AIC) to 

select the optimal lag length in the test regression. Ng and Perron (2001) show that the combination of 

modified AIC and GLS detrended data yield the desirable size and power properties of the unit root test. 

Table 1 provides the DF-GLS test statistics for the 50 states plus DC for both the constant-only case, 

and one where a linear trend is included in the test statistic. As is shown, we could not reject the null 

hypothesis of unit root for all 51 entities for electricity when only a constant is considered in the test 

regression.4 Once a deterministic time trend is added, the null of unit root is rejected for six states at the 

5% significance level. For natural gas the DF-GLS test produced the following results: the null hypothesis 

of a unit root is rejected for seven states with a constantly only, but rejected for only for two states with 

both a constant and linear time trend.  

A key characteristic of electricity and gas prices is seasonality, since demand for these commodities 

tends to be highly weather-sensitive. Thus, for seasonal time series such as electricity or gas prices, the 

presence of a seasonal unit root may affect the properties of the nonseasonal unit root tests, which assume 

one unit root at zero frequency and no other unit roots at other frequencies such as seasonal. If seasonal 

data have only “deterministic seasonality,” it can be removed by simply seasonally adjusting the series. 

However, if the data contain “stochastic seasonality,” then we need to test for unit roots at the seasonal 

frequencies. The most widely used procedure for testing for seasonal unit roots is that proposed by 

Hylleberg et al. (1990), which focuses on quarterly time series. The test for stochastic seasonality in 

monthly data is discussed in Beaulieu and Miron (1993). To implement the seasonal unit root test on our 

data, we make use of the HEGY add-in implemented in Eviews 9.0.5 

                                                             
4 A positive test statistic also rules out the likelihood of stability of the respective time series, implying that the series is 

nonstationary. 

5 Nicolas Ronderos, HEGY – Seasonal Unit Root Test, Eviews Add-in, June 25, 2015. 

http://www.eviews.com/Addins/addins.shtml  

http://www.eviews.com/Addins/addins.shtml
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The seasonal unit root test is implemented using constant, trend, and seasonal dummies as 

deterministic components in the test regression. The lag length is chosen using the AIC. The critical 

values and p-values for the test are obtained using 1,000 Monte Carlo simulations. We have the following 

results. For electricity prices, there is evidence of one unit root at zero frequency (i.e., no seasonal unit 

root) for 26 states, two states display stationarity, and in remaining 23 states there is evidence of seasonal 

unit roots at almost all seasonal frequencies (2, 3, 4, 6, and 12 months per cycle). By contrast, the 

evidence of seasonal unit root is markedly more prevalent with gas prices. There is evidence of one unit 

root at zero frequency for 15 states, and the presence of seasonal unit roots at all seasonal frequencies for 

the remaining 36 states. These results are not presented in the paper to save space, but are available from 

the corresponding author on request. 

Overall, the results of the unit root tests indicate that electricity and gas retail prices in virtually all 

U.S. states are nonstationary. The finding of unit root in aggregate prices is consistent with consumer 

beliefs that energy prices follow a random walk (Anderson et al., 2013). The unit root tests also serve as a 

basis for measuring persistence or inertia in economic series. Thus if a series contains a unit root, “its 

persistence is unquestionably large (infinite) and its variance is unbounded” (Fuhrer 2009, p. 13). 

 

[Place Table 1 approximately here] 

 

4. An analysis of the DOE methodology 

Over the past decade, the DOE has promulgated a set of new regulations pertaining to the energy 

efficiency of consumer durables such as refrigerators and freezers (Docket-Number-EE-2008-BT-STD-

0012)6; residential boilers (Docket Number EERE-2012-BT-STD-0047); residential furnace fans (Docket 

Number EERE-2010-BT-STD-0011); water heaters, direct heaters, and pool heaters (Docket Number-EE-

2006-STD-0129); clothes washers, driers and dishwashers (Docket-Number-EE-RM-94-230A); and other 

appliances. These regulations emanate from the Office of Energy Efficiency (EE) pursuant to the Energy 

Policy and Conservation Act of 1975 (EPCA), as amended by the Energy Policy Act of 2005, and 

authority and details are codified in Title 10 of the Code of Federal Regulations Parts 429 and 430 (10 

CFR Parts 429, 430). 

An NPV analysis is statutorily required to assess potential impacts on consumers, and NPV must be 

positive for the regulation to proceed. In the case of energy-efficiency regulations, DOE has claimed that 

it is capable of accurate measurement, that NPV is net positive, and therefore regulations will result in 

private benefits. The essential element facing DOE is the ability to accurately predict future energy prices 

                                                             
6 Dockets for each regulation, containing all related materials, can be accessed from the index at www.regulations.gov.    

http://www.regulations.gov/
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as these are the key inputs in the NPV calculation. 

There are numerous highly shopisticated predictive models7 in use in academia and private energy 

sector which specifically incorporate the extreme price volatility, nonstationary, and volatility persistent 

of historic data (Behmiri and Pires Manso 2013, Gabralla and Abraham 2013). DOE does not even 

attempt to base their predictive methodology on these widely used models, even though they’re there for 

the asking. Indeed DOE seems to favor a “certainty model” which projects the stable future energy prices 

required for a clean NPV analysis. To validate this claim this section will recreate and analyze the DOE 

model mathematically and empirically. Section 4.1 will present the steps involved in the methodology, 

with subsections describing a step-by-step analysis which demonstrates the effects of each step on the 

data and a discussion of the consequences of the DOE approach. Our methodology will be to compare 

monthly historic results for a 13 year period, 2001-2013 to a matching set of DOE-methodology monthly 

projections over the 13 year period 2016-2028. In the interests of space, the DOE methodology is 

analyzed solely with respect to electricity. 

  

4.1 Description of the DOE methodology 

These are the steps in DOE’s predictive methodology:8 

1. DOE creates what they refer to as “factors” by dividing each monthly state price data point by the 

annual mean in the state associated with the year of the data point. 

2. DOE next averages all factors from the entire data set by month and state to produce “final factors” 

for each state. For each month, regardless of projection year, there is a single factor that plays a prominent 

role in final predictions of future energy prices. 

3. Future annual price projections (national) are derived from the Annual Energy Outlook (AEO), 

produced by EIA. The latest is AEO 2015 (EIA 2015). The annual projections start with an average 

annual national price for 2013 which then grows by an annual 2.5% (nominal) so the average national 

future price in year t is always Pt-1(1+.25). This produces a linear trend that spans the entire 13-year 

projection period. 

4. Future monthly state prices in each future year are determined by multiplying the projected average 

annual national price in each year by the 12 final factors for each state (the final factors repeat every 

year). So if Pt is the annual price in year t, then in state S, the January price is PtffJanuary-S, for February 

                                                             
7 These include generalized autoregressive conditional heteroskedasticity (Kuper and van Soest 2006), artificial neural network 

(Panella et al. 2012), and unobserved components model (García-Martos et al. 2010), among others. 
8 The DOE methodology is described in DOE (2006). There are a few differences between our reconstruction and the original 

DOE method: We aggregate at the state level while DOE uses geographical regions. We also use a more recent historic data set 

covering 13 years from 2001-2013, while DOE’s historic data set covers 1990-2007. 
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PtffFebruary-S, etc. where ffj-S is a final monthly factor for state S in month j. 

 

4.2 Step-by-Step deconstruction of DOE’s NPV methodology 

Step 1. Before presenting the empirical evidence of the way in which Step 1 purges price volatility, 

nonstationarity, and other aspects of ambiguity from historic data, a simple algebraic analysis presents 

some curious characteristics of the factors of Step 1 which will also help explain the empirical evidence. 

Factors are produced in any period with N observations by dividing every price by the mean in the period. 

Treating factors as the new observations first consider the sum of these new observations which is the 

numerator of the mean: 

𝑆𝑓 = ∑
𝑃𝑖

�̅�
=

∑ 𝑃𝑖
𝑛
1

�̅�
=

∑ 𝑃𝑖
𝑛
1

∑ 𝑃𝑖
𝑛
1
𝑁

 = N                                      (1) 

For any sample period with N observations, the sum of the factors will always be N.  Since the mean 

is simply the sum of observations divided by N, the mean of any N factors will always be unity—the 

mean of DOE’s factors in any given historic year will be unity. Indeed, despite the noise of dividing 

monthly prices by a different mean in each year, over the entire data period, the mean of the factors in 

each state will be very close to one.9 This can be seen in Table 2 which compares descriptive statistics 

from actual prices to those from associated factors. 

 

[Place Table 2 approximately here] 

 

The information in Table 2 also shows how volatility or dispersion from mean is very small in 

factors, relative to the actual prices from which they are derived. The Coefficients of Variation (CV) in 

most states for actual prices are many multiples of the those for the factors calculated from these prices. 

Noting that any observation Xi can be expressed as 𝑋𝑖 = �̅� + 𝑑𝑖 where di is a positive or negative 

deviation from the mean, the sample Standard Deviation (SD) of the factors is: 

𝑆𝐷 = √
∑(1+𝑑𝑖−1)2

𝑁−1
= √

∑(𝑑𝑖)2

𝑁−1
        (2) 

Where ∑ 𝑑𝑖 = 0 

Observation of the factors shows that 0 < |𝑑𝑖| < 1 . Therefore the square of any deviation is smaller 

than the deviation and the square route of the sum of the squared deviations divided by N-1 is a small 

number, relative to the SDs of the underlying true historical prices. Also, with a mean of 1, since the 

factors are all positive, the SD always equals the CV.  

                                                             
9 14 states have means that deviate from unity by .01, and 2 by .02. All the rest are 1. 
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Step 2. Even with the noise introduced by averaging factors, the results for Step 1 generally apply to 

Step 2. Here the sum of observations is 12, with 17 states that deviate by an absolute value of .1 and one 

state deviating by .3. The other 33 have sums of 12. The means for all states are unity, with very little 

deviation. The additional averaging reduces the final factor SDs to levels even lower than those for the 

factors derived in Step 1, sometimes dramatically so, and commensurately for CVs as they equal the SDs. 

Table 3 presents the Final Monthly Factors and associated descriptive statistics. 

 

[Place Table 3 approximately here] 

 

Step 3. The literature on DOE price projections has been criticized regarding methodology recently. 

Rather than reflecting the many choices of empirical models, EIA out-of-sample forecasts “have been 

largely judgemental, making them difficult to replicate and justify” (Baumeister and Kilian 2015, p. 338).  

Baumeister and Kilian (2015) offered an alternative by constructing six econometric models and then 

combining them, a method they found to be quite accurate. With respect to the EIA model Baumeister 

and Kilian (2015) had this to say: 

In contrast, the EIA oil price forecasts not only tend to be less accurate than the no-change forecasts, 

but are much less accurate than our preferred forecast combination. Moreover, including EIA forecasts in 

the forecast combination systematically lowers the accuracy of the combination forecast (Baumeister and 

Kilian 2015, p. 338) [emphasis added]. 

Yet DOE feels comfortable imposing a judgemental linear trend on their projections. Figure 2 

compares historic (downloaded from EIA) annual national retail residential electricity prices from 2001-

2013 to DOE projected annual prices for the matching 13-year period 2016-2028. As is obvious, DOE’s 

linear methodology purges all price volatility from annual national prices, which bears no relation to 

history. 

 

[Place Figure 2 approximately here] 

 

The DOE linear trend and annual growth rate ascribed to future annual national prices are based on a 

subjective assumption, not on any econometric analysis of time-series data as would be standard 

econometric practice. Just viewing Figure 2 shows that there is no relationship between historic national 

annual price observations and DOE projections.  This is especially disconcerting because the assumed 

national prices through 2028 dominate the projections. 

Step 4. The final step for DOE projections is the multiplication of the linear projected annual national 

prices by the smooth single set of monthly state-specific factors to project future monthly state-level 
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prices. The first task in our analysis is to calculate the mean monthly price in each projected year t from 

2016-2028, (appropriate for each state) where j denotes month.  

𝑃�̅� =
∑ 𝑃𝑡𝑓𝑓𝑗

𝑁
=

𝑃𝑡 ∑ 𝑓𝑓𝑗

𝑁
= 𝑃𝑡       (3) 

Equation (1) establishes that the sum of the factors j always equals N, therefore the mean monthly 

projected price in any year t is Pt.. The DOE projected price total monthly mean, over the entire projection 

period, will deviate some in each state from the total annual mean, due to accumulated noise from 156 

observations for each state. 

As to volatility the formula for monthly projected price SD is: 

𝑆𝐷 = √∑(𝑃𝑡𝑓𝑓𝑗−𝑃𝑡)
2

𝑁−1
 = √

∑ 𝑃𝑡
2(𝑓𝑓𝑗−1)

2

𝑁−1
 = √

𝑃𝑡
2 ∑(𝑓𝑓𝑗−1)

2

𝑁−1
 =√

𝑃𝑡
2 ∑(1+𝑑𝑗−1)2

𝑁−1
 = √

𝑃𝑡
2 ∑(𝑑𝑗)

2

𝑁−1
 = 𝑃𝑡

√
∑ 𝑑𝑗

2

𝑁−1
 (4) 

The SD is dominated by the SD of the final factors, because in any year P is a constant and over time 

follows a linear trend. However, the factor SDs are small and result from small deviations from factor 

mean (unity) in each month in each state, a pattern which repeats year after year.  

The evidence of volatility dampening is a comparison of the CVs of historic monthly state prices 

from 2001-2013 and DOE projections of monthly prices from 2016-2028. These CVs are displayed in 

Table 4. All of the purging of volatility, volatility persistence, and nonstationarity in energy-price data are 

shown in Figures 3-6, which compare historic monthly prices over the 13 year test period to those of the 

DOE projected prices for four states. The nonstationarity, volatility, and volatility persistence are obvious 

in the historic data. Yet they are completely absent in the DOE projections, in patterns that are seen 

nowhere in the retail residential energy sector. 

 

[Place Table 4 approximately here] 

[Place Figures 3-6 approximately here] 

 

The analysis above clearly shows the limitations of the DOE’s methodology for calculating NPV. The 

demonstrably artificial and statistically biased nature of DOE projections cannot, therefore, be considered 

appropriate for plausible NPV analysis. While the government might have an incentive to use lax 

statistical methods to promote energy efficiency products, in reality, it is the divergence in incentives 

between economic agents (for example, landlord–tenant or builder–buyer) that is inhibiting energy-

efficient decisions, among other factors.  

 

5. The perils of forecasting 

“Before purchasing a good, consumers project the satisfaction it will bring them” (Beckert 2016, p. 

217). This involves some form of expectation building (or forecasting) about the future return before it 
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happens. Humans are bad at forecasting because we fail to factor the possibility of randomness and 

uncertainty that shape the future. For example, we can’t even get it right when estimating the cost of 

building, say, our own house. Similarly, private sector or government too forget about unpredictability 

when they end up with the massively over-budget construction projects such as Sydney Opera House or 

the New Wembley Stadium (The Economist 2007).  

Using economic or technological forecasting models do not help to improve forecast accuracy either. 

The voluminous literature on economic forecasting, as scrutinized systematically in Elliott and 

Timmermann (2008) and Taleb (2010), teaches us that it is impossible to predict the future. Beckert 

(2016, p. 222) provides several anecdotes of the spectacular failure of predictions. First, just weeks after 

the stock market crash, in December 1929, the Harvard Economic Society predicted a quick recovery. 

Similarly, a transcript of the Federal Open Market Committee shows that, even as late as December 2007, 

the expert members did not take any notice of the impending financial crisis. Even more interestingly, in 

1954, the head of the American Atomic Energy Commission predicted that the electricity would be so 

cheap that there would be no need to meter by the end of the twentieth century (Beckert 2016, p. 225).  

These examples show that, even when equipped with sophisticated econometric models, hardly 

anything can be foreseen. Consequently, a large number of papers have been written discussing what 

causes predictions to fail. The earliest explanation for the failure of forecast that we know comes from 

Oskar Morgenstern (1928), who pointed that prediction fails in part because “forecasts create expectations 

that alter the conditions they assume, which renders them meaningless”.10 More recently, Taleb (2010) 

coined the term “black swans” (i.e., highly unlikely long-tail events such as unexpected political 

decisions) and criticized forecasters for underestimating black swan-type events. But, more often, 

predictions fail due to endogenous factors such as misleading or insufficient data, technical shortcomings 

of the instruments and methods used, and forecasters’ tendency to align their predictions with those of 

other institutions (the so-called “consensus forecasts”) – see Beckert (2016) for further discussion. 

Where do consumers stand in all this? A question that is relevant for us is: “how do consumers 

forecast future price changes?” Anderson et al. (2013) address this question by examining two decades of 

data from the Michigan Survey of Consumers. They find that, on average, consumers expect that the real 

price of gasoline five years in the future will be equal to the current real price. That is, the forecast of 

future gasoline price looks very similar to a random walk or a “no-change” forecast. An implication of 

this result is that consumers beliefs about future energy prices do not contribute to the energy-efficiency 

gap.11 In a classic paper about judgment under uncertainty, Tversky and Kahneman (1974) acknowledge 

                                                             
10 Cited in Beckert (2016, p. 227). 

11 See Gerarden et al. (2015) for further discussion.  
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that, in a world of uncertainty, people tend to rely on “heuristics” (or mental shortcuts) to make a 

decision, rather than taking into account every tiny detail. Such cognitive bias threatens to break the logic 

of public choice theory, which suggests, among other arguments, that consumers have stronger incentives 

to acquire information to overcome behavioral biases. A large body of research shows that, more often 

than not, financial decision making is influenced by behavioral biases such as loss aversion or 

procrastination.12 

The upshot of this discussion is that prediction about future is very difficult. And even if such 

predictions about future energy savings are available, they cannot confidently be treated as cardinal due 

to, among other barriers, inconsistency with actual conditions in the home. But, much more importantly, 

when future energy prices are extremely volatile and also unpredictable, even forming plausible heuristics 

to predict future energy prices becomes very difficult. Viewing the problem through the lens of 

uncertainty, it then becomes clear that there is no private behavioral market failure if individuals do not 

consider purchasing durables as an “investment.”  

 

5. Conclusion 

In this paper, we have seen that energy prices are highly volatile and follow a random walk process. 

This implies that energy prices have time-dependent variance, making forecasting of future energy prices 

very difficult. Our second and major finding is that the DOE methodology for NPV analysis cannot be 

reliably used for calculating return on investment in energy-efficient durables. This is because, the DOE 

method purges volatility, volatility persistence, and nonstationarity that are otherwise present in the 

original data. In a nutshell, our results do not imply that consumers are irrational for undervaluing energy 

savings from investment in energy durables. 

 

 

                                                             
12 See Raboy and Basher (2016) for application of behavioral economics in energy efficiency. 
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Table 1. DF-GLS unit root test statistics  

 Electricity Prices   Gas Prices   

 States  Constant  Trend  Constant  Trend  

AL  0.757  -1.132  -0.055  -0.633  
AK  0.669  -1.527  0.334  -1.035  
AZ  2.347  -2.248  -0.134  -1.178  
AR  0.394  -2.026  -0.916  -1.128  
CA  1.189  -2.311  -2.107**  -2.476  
CO  1.053  -1.505  -0.986  -1.772  
CT  -0.224  -1.368  -1.142  -1.645  
DE  -0.406  -1.939  0.157  -0.646  
DC  0.498  -0.997  -1.620  -1.888  
FL  -0.016  -1.411  0.142  -0.676  
GA  1.229  -2.810**  -0.503  -1.120  
HI  -0.474  -2.818  -0.073  -3.615**  
ID  1.358  -2.463  -0.744  -0.891  
IL  -0.178  -1.584  -2.811**  -2.845  
IN  1.828  -3.376**  -1.445  -1.109  
IA  2.294  -1.925  -2.126**  -2.159  
KS  2.713  -1.534  -1.247  -1.662  
KY  1.466  -1.920  -1.116  -2.137  
LA  -1.447  -2.195  -1.959  -2.013  
ME  -0.930  -1.429  -0.689  -1.137  
MD  -0.141  -2.090  -0.875  -1.251  
MA  0.069  -1.506  -0.967  -1.671  
MI  1.076  -1.062  -0.136  -0.693  
MN  2.404  -2.213  -1.945  -2.670  
MS  0.585  -1.559  -2.110**  -2.237  
MO  3.253  -2.890**  -0.271  -1.041  
MT  1.705  -1.274  -1.439  -2.257  
NE  3.105  -2.878**  -1.151  -1.429  
NV  0.801  -1.191  -0.594  -1.571  
NH  -0.741  -1.787  -0.785  -1.150  
NJ  0.183  -0.928  -0.378  -0.445  
NM  2.014  -1.819  -0.568  -1.093  
NY  0.404  -1.441  -0.972  -1.331  
NC  2.594  -2.913**  -0.569  -1.037  
ND  2.861  -2.858  -2.743**  -2.688  
OH  1.842  -2.319  -0.907  -1.399  
OK  0.540  -1.690  -0.643  -1.305  
OR  1.345  -1.981  -0.701  -1.306  
PA  0.612  -2.601  -0.934  -1.398  
RI  -0.806  -2.238  0.001  -1.174  
SC  1.975  -2.010  -0.805  -1.225  
SD  4.194  -3.090**  -2.720**  -2.914**  
TN  0.614  -2.060  -1.022  -1.008  
TX  -0.366  -1.384  -1.571  -1.950  
UT  2.254  -1.793  -1.906  -2.216  
VT  1.576  -0.851  -0.419  -1.326  
VA  0.454  -1.967  -0.834  -1.317  
WA  1.303  -2.036  -0.595  -1.747  
WV  -0.413  -1.456  -0.422  -0.954  
WI  1.024  -0.685  -2.498**  -2.725  
WY  2.471  -2.671  -1.281  -2.421  

Sample period is 2001M1 – 2013M12. The DF-GLS unit root test is developed by  
Elliott et al. (1996). The optimal lag length has been chosen using the modified AIC 

procedure. ** indicates rejection of the unit root null hypothesis at the 5% level of 
significance.  
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Table 2:  Descriptive Statistics Comparison--Historic 

Monthly Prices vs DOE Monthly Constructed Factors 

(2001 through 2013--Actual Prices in ¢/kwH) 

STATE 
Price 

Mean 
Price SD Price CV 

Factor 

Mean 

Factor 

SD 

Factor 

CV 

AL 9.28 1.696 18.27% 1.00 0.047 4.74% 

AK 15.10 2.392 15.84% 1.00 0.037 3.67% 

AZ 9.64 1.433 14.87% 0.98 0.080 8.13% 

AR 8.47 0.969 11.44% 1.00 0.059 5.95% 

CA 13.81 1.475 10.68% 1.00 0.051 5.14% 

CO 9.57 1.528 15.96% 1.00 0.048 4.82% 

CT 15.93 3.562 22.36% 1.00 0.037 3.67% 

DE 11.64 2.511 21.57% 1.00 0.076 7.55% 

DC 10.72 2.583 24.08% 0.99 0.097 9.83% 

FL 10.47 1.423 13.59% 1.00 0.028 2.77% 

GA 9.27 1.477 15.93% 0.99 0.067 6.79% 

HI 25.28 7.798 30.85% 1.00 0.055 5.51% 

ID 7.15 1.142 15.98% 1.01 0.062 6.12% 

IL 9.90 1.559 15.74% 1.00 0.064 6.34% 

IN 8.66 1.476 17.04% 1.01 0.058 5.74% 

IA 9.62 1.112 11.56% 1.00 0.069 6.87% 

KS 8.95 1.522 17.01% 0.99 0.064 6.48% 

KY 7.53 1.485 19.73% 1.00 0.043 4.24% 

LA 8.61 1.013 11.76% 1.00 0.070 7.04% 

ME 14.34 1.535 10.70% 1.00 0.043 4.24% 

MD 11.04 2.903 26.28% 1.00 0.081 8.12% 

MA 14.43 2.237 15.50% 1.00 0.046 4.62% 

MI 10.63 2.322 21.85% 1.00 0.040 3.97% 

MN 9.33 1.570 16.82% 1.00 0.054 5.39% 

MS 9.22 1.315 14.26% 1.00 0.054 5.41% 

MO 8.15 1.582 19.41% 0.99 0.113 11.38% 

MT 8.68 1.138 13.11% 1.01 0.050 4.97% 

NE 8.02 1.578 19.67% 0.99 0.123 12.41% 

NV 11.05 1.363 12.34% 1.01 0.041 4.10% 

NH 14.58 1.834 12.58% 1.00 0.034 3.37% 

NJ 13.53 2.605 19.25% 0.99 0.068 6.82% 

NM 9.71 1.192 12.27% 1.00 0.056 5.59% 

NY 16.53 1.992 12.05% 1.00 0.049 4.86% 

NC 9.42 1.046 11.10% 1.00 0.040 3.95% 

ND 7.68 1.276 16.62% 1.02 0.110 10.73% 

OH 9.88 1.518 15.37% 1.00 0.062 6.15% 

OK 8.41 1.251 14.87% 1.00 0.096 9.67% 

OR 8.16 1.162 14.24% 1.00 0.031 3.05% 

PA 11.13 1.443 12.96% 0.99 0.055 5.50% 

RI 13.95 2.219 15.90% 1.00 0.071 7.09% 

SC 9.57 1.499 15.67% 1.00 0.036 3.63% 

SD 8.46 1.144 13.52% 1.01 0.071 7.03% 

TN 8.21 1.464 17.84% 1.00 0.044 4.34% 

TX 10.90 1.629 14.95% 1.00 0.051 5.11% 

UT 8.08 1.182 14.62% 1.00 0.051 5.16% 

VT 14.42 1.639 11.37% 1.00 0.024 2.40% 

VA 9.25 1.388 15.00% 1.00 0.057 5.72% 

WA 7.26 0.965 13.29% 1.00 0.029 2.89% 

WV 7.49 1.425 19.02% 1.01 0.036 3.62% 

WI 10.84 1.955 18.04% 1.00 0.030 2.97% 

WY 8.21 1.171 14.26% 1.01 0.062 6.11% 
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Table 3: Final Factors and Descriptive Statistics     

STATE Jan. Feb. March April May June Jul. Aug. Sep. Oct. Nov. Dec. SUM MEAN SD CV 

AL 0.923 0.944 0.977 1.022 1.004 1.034 1.028 1.040 1.031 1.029 1.007 0.961 12.00 1.000 0.0395 3.95% 

AK 0.951 0.958 0.984 0.993 1.022 1.025 1.051 1.039 1.010 1.015 1.005 0.997 12.05 1.004 0.0301 2.99% 

AZ 0.866 0.890 0.912 0.966 1.083 1.065 1.059 1.054 1.048 1.037 0.919 0.911 11.81 0.984 0.0807 8.20% 

AR 0.904 0.920 0.956 1.002 1.021 1.060 1.049 1.054 1.052 1.003 1.008 0.951 11.98 0.998 0.0540 5.41% 

CA 0.999 0.971 0.958 0.955 0.997 1.046 1.055 1.045 1.004 0.932 1.001 1.012 11.97 0.998 0.0390 3.91% 

CO 0.934 0.956 0.963 0.989 1.017 1.043 1.033 1.033 1.045 1.015 0.996 0.972 12.00 1.000 0.0371 3.71% 

CT 0.964 0.974 0.981 1.012 1.028 1.016 1.004 1.016 1.018 1.030 1.005 0.981 12.03 1.002 0.0221 2.21% 

DE 0.908 0.908 0.932 0.976 1.034 1.069 1.049 1.050 1.059 1.048 1.028 0.979 12.04 1.003 0.0602 6.00% 

DC 0.918 0.922 0.924 0.925 0.989 1.082 1.097 1.092 1.065 0.982 0.931 0.957 11.88 0.990 0.0731 7.38% 

FL 0.968 0.986 0.992 1.013 0.997 0.991 1.002 1.009 1.014 1.012 1.019 1.000 12.00 1.000 0.0144 1.44% 

GA 0.901 0.927 0.956 0.972 1.002 1.070 1.079 1.092 1.055 0.996 0.957 0.912 11.92 0.993 0.0672 6.77% 

HI 0.959 0.960 0.954 0.967 0.987 1.007 1.013 1.025 1.023 1.039 1.036 1.027 12.00 1.000 0.0324 3.24% 

ID 0.948 0.952 0.956 0.960 0.999 1.069 1.073 1.074 1.010 1.033 1.003 0.984 12.06 1.005 0.0479 4.77% 

IL 0.904 0.950 0.975 1.021 1.059 1.052 1.035 1.031 1.043 1.044 0.993 0.921 12.03 1.002 0.0532 5.31% 

IN 0.909 0.939 0.976 1.056 1.070 1.019 0.996 1.007 1.043 1.083 1.039 0.962 12.10 1.008 0.0539 5.35% 

IA 0.897 0.915 0.949 1.002 1.033 1.067 1.078 1.089 1.068 1.022 0.964 0.935 12.02 1.002 0.0678 6.77% 

KS 0.889 0.923 0.959 1.001 1.020 1.051 1.070 1.069 1.058 1.003 0.964 0.917 11.92 0.994 0.0630 6.34% 

KY 0.931 0.951 0.966 1.018 1.035 1.023 1.019 1.020 1.022 1.052 1.026 0.995 12.06 1.005 0.0367 3.65% 

LA 0.924 0.953 0.981 0.990 1.013 1.019 1.031 1.036 1.037 1.044 0.974 0.947 11.95 0.996 0.0402 4.04% 

ME 0.979 0.995 1.013 0.996 1.017 1.015 1.001 1.001 1.021 1.009 1.003 0.980 12.03 1.002 0.0136 1.35% 

MD 0.915 0.919 0.932 0.951 1.012 1.082 1.079 1.083 1.074 1.013 0.974 0.963 12.00 1.000 0.0663 6.63% 

MA 0.995 0.995 0.997 0.989 1.000 1.004 0.987 0.999 1.023 1.001 0.996 1.022 12.01 1.001 0.0113 1.13% 

MI 0.954 0.961 0.961 0.976 0.997 1.040 1.047 1.054 1.023 0.997 0.983 0.984 11.98 0.998 0.0350 3.50% 

MN 0.931 0.942 0.950 0.973 1.010 1.074 1.076 1.068 1.032 1.006 0.977 0.959 12.00 1.000 0.0528 5.28% 

MS 0.915 0.934 0.976 1.024 1.040 1.032 1.029 1.028 1.017 1.006 1.017 0.969 11.99 0.999 0.0410 4.11% 

MO 0.839 0.860 0.901 0.958 1.085 1.146 1.143 1.137 1.036 0.982 0.938 0.880 11.91 0.992 0.1145 11.54% 

MT 0.932 0.947 0.957 0.971 1.008 1.047 1.062 1.060 1.068 1.044 1.005 0.978 12.08 1.007 0.0490 4.87% 

NE 0.819 0.864 0.887 0.939 0.988 1.127 1.142 1.139 1.140 0.997 0.948 0.880 11.87 0.989 0.1201 12.14% 

NV 0.964 0.995 1.008 1.029 1.017 0.992 0.989 0.983 0.998 1.028 1.054 1.012 12.07 1.006 0.0243 2.42% 

NH 0.977 0.989 0.998 1.020 1.016 1.003 0.998 0.988 1.005 1.030 1.000 0.995 12.02 1.001 0.0148 1.48% 

NJ 0.933 0.943 0.944 0.947 0.966 1.050 1.077 1.086 1.057 0.967 0.962 0.962 11.89 0.991 0.0579 5.84% 

NM 0.933 0.945 0.953 0.972 1.001 1.046 1.054 1.069 1.036 1.044 0.971 0.953 11.98 0.998 0.0491 4.92% 

NY 0.941 0.958 0.950 0.967 0.997 1.038 1.050 1.048 1.048 1.023 0.989 0.967 11.98 0.998 0.0416 4.17% 

NC 0.934 0.963 0.977 1.015 1.015 0.998 1.019 1.025 1.046 1.070 1.017 0.964 12.04 1.004 0.0383 3.82% 

ND 0.861 0.889 0.912 0.973 1.058 1.158 1.140 1.147 1.154 1.075 0.984 0.928 12.28 1.023 0.1120 10.95% 

OH 0.904 0.924 0.948 1.003 1.051 1.073 1.071 1.065 1.048 1.021 0.995 0.937 12.04 1.003 0.0615 6.13% 

OK 0.854 0.923 0.965 1.025 1.020 1.059 1.052 1.059 1.108 1.069 0.969 0.863 11.97 0.997 0.0826 8.29% 

OR 0.967 0.977 0.980 0.988 0.995 1.013 1.021 1.021 1.021 1.021 1.020 1.010 12.03 1.003 0.0201 2.00% 

PA 0.925 0.941 0.951 0.981 1.019 1.048 1.041 1.037 1.024 1.014 0.990 0.958 11.93 0.994 0.0424 4.26% 

RI 0.985 0.998 0.994 0.971 1.000 0.994 0.984 1.001 1.028 0.986 1.008 1.051 12.00 1.000 0.0215 2.15% 

SC 0.946 0.964 0.966 1.021 1.020 1.018 1.010 1.020 1.020 1.034 1.032 0.981 12.03 1.003 0.0298 2.98% 

SD 0.897 0.914 0.935 0.980 1.043 1.093 1.082 1.065 1.083 1.067 0.999 0.947 12.10 1.009 0.0721 7.15% 

TN 0.957 0.955 0.977 1.010 1.027 1.010 1.002 0.998 1.000 1.047 1.043 1.018 12.04 1.004 0.0295 2.93% 

TX 0.933 0.944 0.973 0.993 1.011 1.038 1.036 1.032 1.021 1.006 0.984 0.969 11.94 0.995 0.0354 3.56% 

UT 0.933 0.951 0.947 0.968 1.012 1.051 1.065 1.069 1.040 0.987 0.957 0.962 11.94 0.995 0.0498 5.01% 

VT 0.967 0.978 0.982 1.003 1.008 1.015 1.005 1.005 1.013 1.028 1.023 0.992 12.02 1.002 0.0185 1.85% 

VA 0.915 0.934 0.955 0.995 1.037 1.054 1.065 1.063 1.048 1.023 0.993 0.948 12.03 1.003 0.0535 5.34% 

WA 0.962 0.983 0.983 0.990 0.995 1.013 1.016 1.019 1.023 1.020 1.018 1.018 12.04 1.003 0.0198 1.98% 

WV 0.949 0.960 0.979 1.011 1.045 1.016 1.011 1.018 1.029 1.055 1.028 0.982 12.08 1.007 0.0329 3.27% 

WI 0.953 0.967 0.973 0.999 1.019 1.037 1.019 1.023 1.032 1.017 1.003 0.979 12.02 1.002 0.0277 2.76% 

WY 0.912 0.936 0.950 0.985 1.025 1.059 1.071 1.058 1.086 1.077 1.012 0.960 12.13 1.011 0.0607 6.00% 
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Table 4:  DOE Projections vs. Historic Retail 

Residential Electricity Prices:  Comparison of CVs 

STATE 

CVs for Historic State 

Prices: 2001-2013 

CV's for DOE 

Projections: 2016-2028 

AL 18.27% 9.91% 

AK 15.84% 9.59% 

AZ 14.87% 12.09% 

AR 11.44% 10.53% 

CA 10.68% 9.90% 

CO 15.96% 9.82% 

CT 22.36% 9.39% 

DE 21.57% 10.83% 

DC 24.08% 11.59% 

FL 13.59% 9.25% 

GA 15.93% 11.24% 

HI 30.85% 9.67% 

ID 15.98% 10.24% 

IL 15.74% 10.48% 

IN 17.04% 10.50% 

IA 11.56% 11.24% 

KS 17.01% 11.01% 

KY 19.73% 9.80% 

LA 11.76% 9.94% 

ME 10.70% 9.24% 

MD 26.28% 11.16% 

MA 15.50% 9.21% 

MI 21.85% 9.75% 

MN 16.82% 10.47% 

MS 14.26% 9.97% 

MO 19.41% 14.41% 

MT 13.11% 10.28% 

NE 19.67% 14.86% 

NV 12.34% 9.44% 

NH 12.58% 9.26% 

NJ 19.25% 10.75% 

NM 12.27% 10.31% 

NY 12.05% 9.99% 

NC 11.10% 9.86% 

ND 16.62% 13.97% 

OH 15.37% 10.89% 

OK 14.87% 12.15% 

OR 14.24% 9.35% 

PA 12.96% 10.03% 

RI 15.90% 9.38% 

SC 15.67% 9.59% 

SD 13.52% 11.46% 

TN 17.84% 9.58% 

TX 14.95% 9.77% 

UT 14.62% 10.35% 

VT 11.37% 9.32% 

VA 15.00% 10.50% 

WA 13.29% 9.35% 

WV 19.02% 9.68% 

WI 18.04% 9.53% 

WY 14.26% 10.83% 
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